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There is given a proof of the equivalence of the differential and variational 

formulations of problems concerning the motion of a viscoplastic medium in 
the presence of domains of the rigid state of the medium and flow domains. 

The agreement between the upper bounds of the static limit load coefficients 
and the lower bound of the kinematic limit load coefficients results for a rig- 

idly plastic body from the proof proposed, 
Only the inequality between these bounds was known earlier in the general 

case. The equivalence of the corresponding formulations of the problems was 

known earlier in the case of nonlinearly viscous fluids possessing a dissipative 
potential (it follows directly from general theorems of the calculus of variat- 
ions). The correctness of the formulations of the problems in differential form 

was studied in [l] by the method of variational inequalities for several partic- 

ular cases of the motion of a viscoplastic medium with a dissipative Mises 

potential. 

I.. Functionals of integral type and their subdiffe- 
rentials. Let Q, (e) be a convex, finite functional in the Banach space B , 
and let E be a closed linear set in B , i.e. E = e,, + H where e, is some 

element of E and H is a closed subspace in B . A linear, continuous functional 

L (e) is called supporting to 6> (e) on E in e if 

6, (e + h) - CD (e) > (L (e), h), Vh E H, L E B* (1.1) 

Here B* is a space of linear continuous iimctionals on B , and (L, g) is the 
value of the functional L from B* on g from B. 

It is known (see [Zj) that aconvex, continuous functional has a support functional 

on B in any element e from B . The totality of all support functionals in e on 

E is called a subdifferential of the functional CD in e on E and is denoted by 

do (e) (see [3$. Therefore, a multivalued operator A is defined 

Lemma 1.1. The operator A is monotonic, i. e., 

CL (4 2 L (ed, el -- 62 > 0, VL (ei) E BO (e,), i = 1, 2 (1.2) 
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P r o o f. Writing the inequality (1.1) for e = e,, h = e2 - e, and for 
e = e2, h = e, - e2 and then adding, we obtain (1.2). 

Let u be an element from B and uT1, IZ = 1,2, . . . a compact set in B . 
Let V denote the following set of elements: 

V n,h-=(“n+(2k-1) U)/2”, II=],2 ,,.. ;/i=O, 1,2 ,... 

L e m m a 1.2. For any u from I’ and some L (v) from &D (u) , let the 
following inequality be satisfied 

(x - L (u), U - U) > 0 (1.3) 

Then the functional X enters into da (u). 

P r o o f. We find from the definition of ad, and (1.3) 

(2, u - u) < (L (u), u - u) < a, (2c - u) - CD (u) ( 1.4) 

Substituting the elements un, k, successively into (1.4) for k = 0, 1, 2,. . . 
and adding the inequalities obtained, we find 

(Xl 2 (UT, - u,)) < CJ (u + 2 (Y,‘ - II)) - Q (7i) (1.5) 

The assertion of the lemma follows from (1.5) and the density of the elements u,, . 
Let us note still another property of the subdifferential (the Morrow -Rockafellar 

theorem) which will be used below. Let Y (e) have the form Y (e)= CD, (e) -I- 

@‘z (e) e where @‘i (el arc convex, continuous functionals in B . Then dY (e) =;I 

30, (e) + a@‘~ (e) ( see [3& In particular, if 

Y (e) = 6, (e) -t (f, e), f E II* (1. C) 

then i3Y (e) = d@ (e) + f. 
Let us consider the problem of finding a II from E such that 0 E d@ (U) = 

A (u) (Problem l), i. e. s the problem of the existence of an L in dd> (u) such 
that (L, h) = 0, Vh E H. It has been shown (see [3]), that Problem 1 is equiv- 

alent to the problem of the minimum of the functional @ (e) . Namely, the u requir- 

ed is an element from E at which 6, reaches the lower bound on E. 
Let us examine a somewhat more general problem (Problem 2). Let c be a 

multivalued mapping of E in B* . Find the ZI from E such that a functional L 

will be found in C (u) for which (L, I)> =- 0, Jr h E5 11 . We represent c in 

the form C = A j I? , where A (E) = 88) (e) and let A (_&) = B* . Then, 

in general a multivalued operator A-1 :B*-+ECB isdefinedon B* . We 

seek the solution of Problem 2 in the form U = A-IL . We then obtain the follow- 

ing equation to find I, : 

I, + RA-‘I, = 0, 0 E 13” (1.7) 
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An extensive literature is devoted to the investigation of the solvability of (1.7). 
For instance, if RA-’ is a compression operator, then (1.7) is solvable, We note 
that the construction of A-l can be considered as a variational problem. 

Let us make the form of the functionals rD (e) specific. Let o be a bounded 
measurable set in R” and let cp (x, e) be a function in w X Rm that has the prop- 

erties 

q (x, e) > 0 for 1 e 1 > 0, cp (x, e) = 0 for 1 e / = 0 1 e 1 is the norm 

in R” 

cp (x7 5) B C I e I p forJel>l (1<PP(m); 

for each fixed e the function Cp (x, e) is continuous almost everywhere in x , and 
for each x function rp (x, e) is convex in d 

Let L,” (w) d eno e a space of measurablr e -actor- functions e (x) = (e, (x), . . t 

em (x)) for which the integral of 1 e (x) IP with respect to o is finite. It 

fiilows [4] from the mentioned properties of the function cp (x, e) and the boundedness 

of 0 that the functional 

Q (e(x)) = J cp (x, e (x)) &I 
0 

(1.8) 

is defined on Lpm (co) , 
From the theorem on the general form of a linear continuous functional in L, (co) 

(see [5]) we have the following representation for L (e) from (1.1) when CD (e) has the 
form (1.8): 

(L(e), h) = jo(x)h(x)dw, Vh(x)E&“(m) 
w 

(1.9) 

Condition (1.1) can be written in the form 

J [cp(x, e(x)+ h(x))-cp(x,e)-a(x)h(x)lh>O, ‘Jh(x)ELpn’(m) (l-10) 
w 

L e m m a 1. 3. If o (x) satisfies the condition (1. lo), then for almost all s 
from o following inequality is satisfied 

cp (x7 e (4 + h) - v ( x, e(x))>a(x)h, VhER” (1. 11) 

P r o o f. If the assertion in the lemma is false, then for some h from R” there 
exists a set M of positive measure in 0 , on which the opposite inequality to (1. 11) 

is satisfied. Setting h (x)equal to K in fil and equal to zero outside ,‘I1 , we arrive 
at a contradiction to (1.10). 

Therefore, it is sufficient to know the expression for the subdifferential (support 

functions) cp to describe the s&differential (1.8). It is convenient to describe the 

subdifferential cp by using the conjugate (dual to Legendre (Young)) function ‘c* 
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‘P* (XC 4 =r SUP (eCr - q~ (8, e)), 
l=ERrn 

eo = 2 eiui ( 1.121 
i 

The operation of going from cp to cp* is involutory [6] (for example, if cp, ‘p” 
are con~nu~s everywhere), i. e., 

‘p (x, e) = sup (eu - ‘p* (x, 0)) 
aER” 

(1. 13) 

Formulas (1.12) and (1, I.31 define the multiva~ued mappings e (G), d (e). Namely 
e (a) is the set of all e from R” for which the upper bound is reached in ( 1.12). 
The o (e) are determined analogously from (1.13). It follows from (1. 13) that the 
support functional to (1.8) allows the representation (1.9), where for almost all x 
from w 

n (4 fez 0 (e (4) (1.14) 

For example, if the function rp (X, e) satisfies the above-mentioned conditions 
and is smooth for 1 e 1 > 0 , then (1.14) is equivalent to the relation 

a(x)=vdp(x,e(x)), Iel>O; cp*(x,cr(x))-0, let==0 (I.19 

for almost all X from 0 . 

2. On certain stationary problems for viscoplastic 

media. Let o beadomainin R3 filled with a continuous medium. Let us 

examine the linear manifoldulof kinematically admissible velociq fields in 0. The 

principle of virtual power (see [7] for instance) is the following: 

s 
ph$- do+SC~~ih,do-F(h)=-O, Vh (2. J-1 

. . 

where F (h) is the power of the external forces in the variation h of the field u 

from U S oij is the real stress field, and p is the density of the medium. 
The model of an incompressible viscoplastic medium is defined by the dissipative 

potential cp (x, eir) (see 183). Let the function cp (x, e,), e = (etr) possess the 
properties mentioned in Sect. 1 

and let q be a smooth function for 1 e 1 > 0 . Then the relationship between dii 

and u for a viscoplastic medium is defined by the formulas 
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uij = g (X9 eid, lel>O(eij =+(s+$)) 
3 1 

(2.2) 

‘p* (X, Uij) = 0, 1 e 1 = 0 

Moreover, it is assumed that u from U satisfies the incompressibility condition 
div u = 0. 

The flow condition ordinarily (see [9, lo], for example) defines a prism in the 

space Oij - The second condition in (2.2), which is also a flow condition, defines 

a sphere-type domain. Both formulations of the flow condition are evidently equival- 

ent because of the incompressibility condition. 
Now, let us examine the principle of virtual power in the following approximation 

(slow stationary motions): 

and we consider the question of the solvability of the problem (2.2), (2.3). 
Let us introduce a functional semi-bounded from below in U 

1 (u) = J Cp (~7 %j (x)) do - F (U) 
0 

(2.3) 

(2.4) 

Here F (u) is a linear functional. 

T h e o r e m 2.1. If u (x), bij (x) are a solution of the problem (2.2), (2.3) 
then u (x) minimizes (2.4) in U . If u (x) minimizes (2.4) in U then there exist 
Uij (x) such that U, Uij is the solution of the problem (2.2),(2.3) . 

The assertion of the theorem results directly from a remark relative to the form of 

the subdifferential for (1.6), from (1.15), and from the remark in Sect. 1 relative to 
the solvability of the problem 1. 

Thus, the investigation of the correctness of the problem (2.2), (2.3) is reduced to 
the problem of the minimum of the functional (2.4), which is considered in detail in 

I?, 11% 
Conditions (2.2) show that the problem of steady motions of a viscoplastic medium 

in a problem in a domain with unknown boundaries. Theorem 2.1 sets up an equival- 

ence between this problem and the problem of the minimum of the functional (2.4), 
which is generally non-differentiable. Let us note a particular case when the connec- 
tion between the differential formulation of the problem and the variational principle 
is especially simple. Let the solution of the problem (2.2), (2.3) be such that 1 e (xj 1 

> a > 0 everywhere in o . In this case, the non-differentiability of q (x, eii) 
for I e J = 0 is inessential and the functional (2.4) is differentiable on such an extre- 
mal. Under these assumptions, the first condition in (2.2) and (2.3) are the usual 
Euler equation for the functional (2.4). Namely, under these assumptions the relation- 
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ship between the equations of motion and the variational principle is set up in [12] 
for a dissipative potential of the form 

We note that the correctness of a somewhat more.generai class of problems can 
be investigated. Namely, let US replace the condition (2.2) by the following relation- 
ship: 

% ,. 
“ij-- iA>. -----.-1 pi,(x) e), \el>O (2.6) 

V* (xi, G~~;sO, lel-0 

The problem (S&3),(2.6) is problem 2 from Sect. 1, where 

<R(U), 11) = ~ ’ f~ijh,j do az 
w i.i 

For example, if cp (x, e) has the form (2. s), the p+j satisfy the conditions 

Pij ix, 0) z (1; I Pij Pi, (X, ez) 1 < kij 1 el - e, 1 

and the 1 kij are sufficiently small, then the operator &A-I is compressive. 

3. Functions with values in Ban ach spaces. Wepresent 

preparatory material which will be used in Sect. 4 in the investigation of nonstationary 
problems. 

Let .@ be a separable, reflexive Banach space (see [S]), We consider the fimct- 

ion f (L) in the segment IO, T] with values in B ; the function f {if is measur- 
able (see [133, p. 765) if for any e, F > 0 there exists a compact KF, K, C fO,T1 
of Lebesgue measure less than r such that the function f (t) is continuous outside 

x We shall use the notation A&” 10, 2’1, p > 1 
me$2surable functions f (t) for which \I f \I$ (t) 

(see [13]) for the space of 
is summable in !O,Tj . Let 

ME- [O, 2’1 denote the space of measurable functions for which the quantity 1 f ~Js 

(t) is bounded in [O,TJ , 
We examine the separable Hilbert space H . Let f (t) be a function in IO, 2'1 

with values in H . The derivative u’f tit is called an element of H such that 

lim II df I dt - (f (t + At> - f (t)) i At JJa = 0 
At-HI 

We will say that the function f (t) has a generalized derivative 
if f (t) is continuous in i0, T], f',(t) is from M$ [O, Imlir and 

(3.1) 

f’ (t)in iO,TI 

(3.2) 

where cp (t) is from Cn [ 0, Tl and has a piecewise-continuous derivative in [O,T] ,> 

cp (0) = cp (T) = 0 l 
It can be shown that the generalized derivative agrees with 

the derivative (3.1) in [o, T] , except perhaps in a set of Lebesgue measure zero 
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(see [14]). 
An integration by parts formula 

T T 

793 

J (fl’, f& dt + j (fly fz’jH dt = (fl(Th ff (T)jH - VI 6% f2 (WH 
0 6 

holds for functions with values in H L 
Let LBP LO, Tl be the factor space of MB’ IO, Tl in the space of negligible 

functions (i. e.,equal zero almost everywhere) [13]; LgP [O. T] is a Banach space 
with the norm 

where M is a set of Lebesgue measure zero in IO, Tl a 
Lemma 3. 1. Let {u,, (t)} be a sequence of piecewise-linear continuous 

functions, where (1 du, / dt JIH < c (the derivative exists everywhere in [O, Tl 
except at a finite number of points). Let the f.unction un (L) converge uniformly 
to u(t) in IO, TJ. Then there exists a II,’ (t) from MHm LO, Tl and 

The assertion in the lemma follows from the fact that Lg* IO, Tl is conjugate 

to LBI [O, Tl [13] and the properties of weak compactness of the space conjugate 
to the separable space [5]. 

Let R (t, e) be a number function defined in LO, Tl x B, R (t, 0) = 0, 
and R (t, e (t) ) is from Mm 10, rifor e (t) from M,m [o, T]. 

L e m m a 3.2. If 

T T 

f R (t, e(t)) dt = 0 
6 

(s R (t, e (t)) dt > CJ~, Ve (t) E fvBm [0, T] 
0 

then R (t, e) = 0 (R (t, e) > 0) for almost all t from LO, Tl and all e from 
B. 

The proof of the lemma is analogous to the proof of Lemma 1.3. 
L e m m a 3.3. If e (t) from MB” [o, T], then a section from MT* IO, T1 

is contained in A (e (t)) = a@ (e (t)) ,i. e., there exists a function o it) from 
?dg* [0, Tl such that o (t) E A (e (t)). 

For the proof, we show that a measurable section is contained in A (e (t)), 
We approximate e (t) by step functions e, (t) 

There exists a step function CO, (11 from M;% [o, T] 
in the norm LB’ [O, T] [XI]. 

(en (t) ) and secondly 
such that, firstly on (t) f3 A 
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The sequence (0, (t)} can be considered weakly convergent to 0 (t) from 
n/r,“. [O,Tl and 

o<j[(~(t),l;(t))--(n,(e(t)+V(t))-(D(e(t)))ldt, (3.3) 
0 

F’u (t) E _%I; [O, T] 

The assertion in Lemma 3.3 follows from (3.3) and Lemma 3.2. 

4. On certain nonttationary formulations of probl- 
ems inthe theory of viscoplastic media. Letusfirstconsider 
the problem concerning the solvability of an abstract parabolic equation with a multi- 
valued stationary operator, and then let us apply the results obtained to the investiga- 
tion of dynamic problems for viscoplasticmedia. 

Let u (t) be from CrI 10, Tl 0 ibIn” 10, 2’1 and u’(t) from MHm 10, 2’1. 
Furthermore, let o (t) from MBm,[ 0, T] be the section A (U (t)(the operator A = 

a@is introduced in Sect. 1, and for simplicity is assumed independent of t ). 
Assume that f (t) is from CH [0, T] . The function u (t) is called the generali- 

zed solution of the nonstationary problem 

A (u(t)) + du / 8.t = f (t), z.! (0) = uo 

if for almost all t from [0, Tl the equality 

(U’, U)n + (0 (t), U> = (f, u)H, 24 (0) = UO, VvEeBnH (4.1) 

is satisfied. 

The uniqueness theorem for the generalized solution is proved by the same scheme 
as for the single-valued monotonic operators (see [15], p. 173). The existence theorem 

for the generalized solution can be obtained on the basis of [IS]. 
Namely, let {Atin), i = 1, . . ., n: ZiAtin = 7’ be the partition of [0, T] . We 

examine the chain of elements uin from B n fisuch that 

-&- 11 u - tl;_, jlH2 + @ f”) - (f tti”h = (4.2) 



0~ theory of incompressible viscoplastic media 795 

There follows from the Morrow - Rockafellar theorem (see Sect. 1) and (4.2) that 
there exist 0 (G i “) from SD ( uitz) for which 

(. Ui 
i- (f-0 (u*n), 2’) = (f Vi”), V)H, vu E I.? n 11 

(4.3) 

It is proved in [lS] that 

(4.4) 

Let f (1) and the initial element ZQ satisfy the conditions 

II f tt3 - f (47) IIH d e2 I 81 - t2 I y”2 II f 64) IIH (4.5) 

n II (Ul - UO)/&" IIH d cm VAtIn (4.6) 

Under these assumptions, it is proved in fl6] that 

fi ZL~-- Z&I, At”liH Q c4, i = 2, 3, . . ., n (YE) (4.7) 

Let us introduce the functions uR (t), B”(t), where un (t) is a step function equal 
to uy_i for t:, < t < tin, and 
equal to ui” 

iin (t) is a continuous piece-wise linear function 
for t = t4” . We find from (4.3) that 

f(Jg, zi)/t+ i <o+“(t), v(t)>&= 
0 0 

(498) 

0 (2 it)) = 0 (I&), f”(t) = f (tE1) C$__l< t < ti”) 

It is proved in [16] that upon compliance with conditions (4.5) and (4.6), the func- 
tions iin (t) converge in the norm f C, 10, Tl to u (t) . It follows from Lemma 3.1 
and (4.7) that there exists a u’ (t) , Because of (4.4) it can be considered that the 
functions 0 (u” (t)) converge weakly to II (0 in M& [O, T] , 

We show that x (t) is from A (u (t)) , The equality 
T 
,. 

s 
[(u’, “)H + (Xt v) -((f, V)Hl& = 0, ‘tru EM&H 10, Tl 

0 

follows from (4.8). 
Let v (t) be from M’;og i0, 2’1, o (v (t)) from M;* 10, Tl and u (v (t)) 

A (v(t)) = LXD (v(t)) (see Lemma 3.3). Furthermore (analogously to [15-J 

(4.8) 

from 
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From (4.8) we find for L’ (t) = un (t) 

(4.10) 

(4.11) 

From (4.9) -(4.11) and the integration by parts formulas in Sect. 3, we have 

o<f (X-w(ti(t)), U- 0) dt, Qc (t) E NBm [O, 7’1 

0 

It follows from the last inequa~ty, Lemmas 3.2 and 1.2 that 
i. e.,the existence of the generalized solution (4.1) is proved. 

X is from A (u (tf) ) 

Parabolic equations with multivalued stationary operators A have been examined 

in [17,18]. The concept of the generating operator of a semigroup and the concept 

of the generalized solution itself, which is weaker compared to (4, l), were used to 
construct the generalized solution in [l? J. The existence of an ordinary generalized 

solution was proved successfully above because of the introduction of condition (4.6) 
on the initial element uo , (Such a condition on the initial element was not consider- 

ed in [17,18]). It is shown in [lS] that compliance with condition (4.6) is associated 
with the requirement of definite smoothness of the initial conditions, in particular, it 
is always satisfied if the initial element ,rp minimizes@ (M)* for example. 

We note that the va~ational scheme elucidated for the co~tmction of approximate 
solutions of parabolic equations (agreeing substantially with the Rote scheme) can be of 

interest from the computational viewpoint even in the case of linear equations. This 

is related to the fact that by using dual functionals the upper and lower estimates of 

the minimal values of the functionals (4.2) can effectively be obtained, which affords 
additional information about the accuracy of the approximate solution as compared to 

the method of grids, for instance. 
Now, we turn to the nonstationary motions of a viscoplastic medium. Let us cons- 

ider the principle of virtual powers (2.1) in the following approximation (slow nonStat- 

ionary motion): 

si 
P~h+Ca3ij!dtll=F(h)l divu=O, rtIfZO =UO(~) (4.12) 

0 ij 

where the Uij are determined by (2.2). Under these conditions, the problem (4.12) 

is a particular case (4.1). Namely 
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Let us note that sufficiently many specific mechanical problems concerning the 
nonstationary motions of a viscoplastic medium [19] has been considered. However, 
the correct mathematical formulation, taking account of interaction between rigid 

zones and flow domains, has not always been given. 

5. On the limit load factor for a rlgidly plattic 
medium. We consider the application of Theorem 2.1 to the problem of bilat- 
eral estimates of the limit load factor. 

In the case of a rigidly plastic medium the dissipative potential ‘p (x, eij) is 

such that up (x, Aeij) = 3: v ix, eij), Vh > 0 [8]. 
Let the kinematically allowable velocity fields form a linear space. The limit 

load factor C* for the external forces with volume density f and surface density t 
is determined by the formula [S] 

@*)-I = $LZ (u (4) [S cp (x, eii (x)) d@T1 

F(u) = Jfuclo + J tudos 
0 am 

Lf F (u) > 0 and for a certain u from U , then we obtain the upper bound 
for c*. 

c* < c, = (J Cp (X7 eij (X)) do) I F C”) 
0 

Let CC be a nonnegative number such that functions aij from M” (a), 
exist for which-the following equalities are satisfied 

o ij oijeij da = ~4’ (n), Vu(x) E u, ‘p* (X, (3i) (x)) = 0 J-2 (5.1) 

Since rp* (x, aij) = 0 then 

B oi/ij < Cp (X7 eij) 
ij 

and we obtain from (5.1) that 

$>F(u) \rpdo, VUEU I 0 

Therefore, if F (u) > 0 for at least one u from CT , then c* > CO 
Let c* = sup co . It is evident that 
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c* > c, 

Theorem 5.1. c* = C* 
P r o o f. It can be considered that c* > 0 since if C* = 0 , 

0ij = 0 for c, = 0 . Let us take the positive number 
and let us consider the functional 

(5.2) 

then we can take 

c, o<c<c* 

J, (u) = J CP (x7 eii (x)) ah - CF (u) 
0 

Evidently J, (U) > 0 for all u from U , i. e., u z 0 is a vector field 
minimizing J, (u) . But then according to Theorem 2.1 there exist 0 ij such that 
(5.1) is satisfied for c, = c , 

The theorem is proved. Only the inequality (5.2) was known earlier in the geileral 
case. 
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